
ARC-AGI Final Report​
CS7637
Joey Bishop​

jbishop47@gatech.edu

1. FUNCTIONALITY AND DESIGN

The agent takes a heuristic approach to solving problems that involves parsing,
testing, and solving. When given a problem, the agent parses the problem to
derive relationships, with information such as whether a problem’s training
inputs and outputs share the same colors or have the same dimensions. Some
relationships are problem-specific, and examples of these relationships are
provided in section 2.1. The agent uses these relationships as prerequisites to
applying its known problem types; if a problem satisfies the prerequisites, then it
will attempt to apply the problem solution.

Solving a problem begins with the testing phase, where the agent attempts to
apply the solution to each training set, deriving any information necessary to
apply the test set. If the agent can sufficiently apply the solution to each training
set, then the problem solution is considered valid, and the solution is applied to
the test set. If no solution can be found in the agent’s list of heuristics, then the
problem’s test input is returned as an output. As a result, there is a very high
likelihood that an agent will not solve a problem for which there is no matching
heuristic.

The agent does not store any data from problem to problem, and is not given any
memory at initialization, aside from the heuristics and algorithms necessary to
solve various problem types.

2. PERFORMANCE

Across the entire problem scope, the agent can solve 86 of the 96 problems. For
Milestone B, the agent can solve 16 of the 16 training problems and 13 of the 16
test problems. For Milestone C, the agent can solve 16 of the 16 training problems
and 15 of the 16 test problems. For Milestone D, the agent can solve 15 of the 16
training problems and 11 of the 16 test problems.

1

2.1. Agent Success

While the agent can solve all but one problem from the training set, it does not
have exactly one heuristic for each problem. Some problems are variations of
each other, and other problems build on shared logic. Examples of these
problems, and how the agent solves them, are explored in the following sections.

2.1.1. Intersection

The Intersection problem type actually represents a family of problems with
small variations, and the agent can reliably solve each of these. In simple terms,
an intersection requires the agent to take N shapes, which may be separated by a
solid line, overlay the shapes, and fill the shared space with the appropriate
color. This sounds straightforward, but there are several alternatives to this
problem.

For example, the shapes might be vertically or horizontally centered (Figure 1).
Another variant lies in how to color an intersection: In some problems, the
intersection is filled in black, with the remainder in green, but other problems
require the inverse. Additionally, there might or might not be a solid line
separating each shape. Further, the intersection might be a logical OR, AND, or
XOR between the N shapes.

Figure 1—A vertical intersection problem (left) that requires the solution
to highlight the intersection in black, while another intersection problem
(right) is horizontal and requires the solution to highlight the intersection
in green.

The agent solves this problem by first checking its prerequisites. If a problem’s
input shape matches the problem’s output shape on one dimension, and the
other dimension is N times that of the output dimension plus N, then the
problem matches on size. In addition, the input must contain exactly three or
four colors, and the output must contain two colors. If these requirements pass,

2

then the problem is considered an intersection problem, and the dimensions are
stored for the test phase.

To test, the agent takes the two shapes from each training input, ignoring the
separator (if any), and overlays them. The overlay has four different strategies,
involving what to match on and whether to invert the colors, and compares each
with the training output, remembering which strategy was correct. If each
training set can be solved with the same overlay strategy, then that strategy is
applied to the test input.

2.1.2. Blob Highlight

Several problems feature a “blob”; a 2-dimensional closed shape (Figure 3). To
identify blobs, the agent is equipped with a breadth-first-search approach
applied to a given input or output. Once a blob has been identified, a “fill” is
performed within the blob to determine if it is fully closed. This function is
shared between several heuristics and algorithms.

Figure 3—Blobs can come in all shapes, sizes, and colors, but must be a
closed 2D shape. They might be fairly simple, empty polygons (left),
contain sparse colors within them (middle), or even intersect with itself
(right).

To match the Blob Highlight heuristic (Figure 4), the input and output for each
training set must have the same dimensions and must not have the same colors.
In fact, for each training set, the input can only contain a background color and a
blob color, and the output must contain the same background and blob colors.
The output may also contain two additional colors, which will serve as the
exterior highlight and interior highlight colors. From there, blobs are compared
between the training input and output. If the same closed blob exists in both the

3

input and output and a highlight is applied to the output, then the training set
passes. Highlight colors are stored to be used in the solve phase.

Figure 4—The input (left) for a bob highlight problem features some fully
closed blobs, and an open blob. To output (right) reveals the solution by
providing the expected exterior and interior highlight colors.

To solve the problem, the agent gets all blobs that exist in the problem test input,
provided by the agent’s blob identification algorithm. Then, the agent simply
applies the appropriate exterior and interior highlight around the blob.

2.1.3. Wires

Figure 5—In a Wires problem, only rows where the left and right edges
share the same color are connected. In the first row, cyan exists on both
edges in the input (left), so a horizontal wire is drawn between them in
the output (right). The second row contains yellow and red, so no line is
drawn.

In the Wires problem type, the left and right edges of the input feature rows of
alternating pixel colors, and the output contains horizontal “wire” lines that
connect two pixels of the same color on the same row, as seen in Figure 5. These

4

problems require the input and output of each training set to share the same
colors and dimensions, the input’s left column matches the output’s left column,
the input’s right column matches the output’s right column, and the center of the
input is a background color.

To test, the agent simply finds rows where the same color, aside from the
background color, are present, and fills the entire row with that color. If the agent
can solve each training problem with this method, then the same algorithm is
applied to the test input.

2.2. Agent Failures

The heuristic approach for this agent has enabled it to solve all but one problem
from the training set. However, it is clear that it does not appropriately abstract
all problems to recognize certain variations. The failing training problem and an
unsolved test problem are detailed in the following sections.

2.2.1. Blob fill with most common color

The agent can recognize this algorithmically complex problem type, but is unable
to reliably provide a solution. The heuristic for this problem relies on the
existence of blobs and color relationships between input and output. Specifically,
blobs must exist between both input and output, and the output cannot contain
more colors than the input. Fill colors in the output are also compared with pixel
colors in the input.

Figure 6—In the “Blob fill with most common color” problem, a set of
blobs and open shapes are given (left) with some floating pixels. In the
solution (right), each blob is filled with the most common enclosed pixel
color. All other pixels are removed.

5

To solve this problem (Figure 6), the agent must execute several steps. Firstly, the
agent must recognize all blobs in the test input. Then, the agent must retrieve the
most common pixel color enclosed by each blob. Following, each blob must be
completely filled with its corresponding pixel color. Finally, all remaining pixels
must be cleared from the grid.

Figure 7—A blob where the bottom surface is concave.

The algorithm fails to properly fill complex blobs, such as those with concave
surfaces, as in Figure 7. This introduces additional complexity in filling a blob
that results in errors. In addition, recognizing stray pixels in the grid proved to
be more complex and computationally intensive than expected. As a result, the
agent is unable to reliably solve this problem when there are complex blobs or
stray pixels.

2.2.2. Spiral

In the Spiral problem type, only an empty input is provided, and a color spiral
filling the space of the grid results in a proper solution, as seen in Figure 8. The
agent’s heuristic for this problem type is flexible enough to recognize any color
for the spiral color, but its rigid in that it expects the spiral to always begin in the
top-left corner and move clockwise. This rigidity in the heuristic prevents the
agent from even applying the algorithm to Spiral problems where the spiral
might begin in a different corner or the spiral moves counter-clockwise.

6

Figure 8—A Spiral problem type begins with an empty grid (left) and
finishes with a spiral filling the whole space (right).

3. HEURISTIC APPROACH

The overall agent design is a heuristic approach. Each problem type is recognized
with a set of criteria, or heuristics, that limit the agent from applying a certain
solution type unless that criteria is met by the problem. The heuristics are
abstracted, allowing for variants in dimension, color, shape counts, and more
between examples of problem types. As a result, the heuristic really tests
relationships between training sets and training set inputs and outputs. For
example, two training sets might have different colors, but if each training set’s
input has one less color than its output, then the training sets might belong to a
certain problem type.

This approach has grown over the course of the project, but has remained to its
core since Milestone B. Similar heuristics have been grouped into certain classes
in the code, which enables all of those heuristics to leverage shared logic or
properties. For example, if two different heuristics need to identify blobs, then
they will be grouped into a blob class and can each rely on shared logic for
identifying blobs.

Each heuristic has an accompanying algorithm for solving the problem.
Algorithms range in complexity from rotating an input to scaling, transforming,
counting, and recoloring shapes in the input. Similar to shared heuristic class
logic, shared functions are available to algorithms that must perform similar
mutations or calculations.

7

4. AGENT VERSUS HUMAN

At a high level, the agent takes a similar approach to solving known problems as
a human would. Both a human and the agent perform some preprocessing over
the problem, such as discerning relationships in dimensions, colors, and shapes
between inputs and outputs, to derive meaning. Both the human and the agent
can select an algorithm to solve the problem based on the relationships and
meaning derived. The nature of the algorithm might be different between agent
and human, as we do not normally think in terms of color masks and matrix
multiplication, but the process of selecting an algorithm is similar.

Unfortunately, the similarity between human and agent is broken when a
problem solution is unknown. Because the agent behaves heuristically and is
limited to its given algorithms, it does not have the capability of creating new
problem solutions. A human, on the other hand, can often create and apply a
new algorithm to solve a novel problem. From there, the novel problem type and
algorithm are stored in memory for later use. The agent does not have any
capabilities for this and is unable to solve the problem.

8

	ARC-AGI Final Report​CS7637
	1. FUNCTIONALITY AND DESIGN
	2. PERFORMANCE
	2.1. Agent Success
	2.1.1. Intersection
	2.1.2. Blob Highlight
	2.1.3. Wires

	2.2. Agent Failures
	2.2.1. Blob fill with most common color
	2.2.2. Spiral

	3. HEURISTIC APPROACH
	4. AGENT VERSUS HUMAN

