
Behavior of Reinforcement Learning Algorithms on Unique Markov
Decision Processes

Joey Bishop

I. OVERVIEW OF MDPS

The two explored Markov Decision Processes (MDPs) are
Blackjack and CartPole.

A. Blackjack

Blackjack is a discrete, stochastic MDP where the agent
must obtain cards that sum to closer to 21 than the dealer
without going over 21. The state space is a 3-tuple containing
the player’s current sum, the value of the dealer’s one visible
card, and whether the player holds a usable ace. The action
space consists of {0, 1}, where the agent can either stick (0)
or hit (1). The reward signals consist of +1 (win game), −1
(lose game), 0 (draw game), or +1.5 if the agent wins the
game with a natural blackjack.

B. CartPole

CartPole is a continuous, deterministic MDP where the
agent must balance a pole attached to a cart by moving
the cart left or right. The state space is an array of length
4. Index 0 represents the cart position, which is of range
[−4.8, 4.8], index 1 represents the cart velocity, which is
of range [−∞,∞], index 2 holds the pole angle, which is
of range [−24, 24], and index 3 provides the pole angular
velocity, which is also of range [−∞,∞]. The action space
consists of {0, 1}, where the agent can either push the cart
left (0) or right (1). The reward signal is simply +1 for every
step taken, including the terminating step, for maximum
possible reward of +500. The episode terminates if the pole
angle is greater than ±12, the cart position is greater than
±2.4, or the episode length is greater than 500.

II. OVERVIEW OF ALGORITHMS

The two MDPs are explored through Value Iteration (VI),
Policy Iteration (PI), and SARSA. A brief explanation of
each reinforcement learning algorithm is provided below.

A. Value Iteration

Value Iteration is a model-based reinforcement learning
algorithm that iterates on reward values by applying a policy
in state once, and evaluating that policy through the Bellman
optimality equation. Because Value Iteration is acting on
values, learning becomes more direct; however, it becomes
more difficult to transform this into a policy. Value Iteration
converges when the value function "by only a small amount"
after the policy is evaluated [1].

B. Policy Iteration
Policy Iteration is another model-based reinforcement

learning algorithm that iterates to an optimal policy by apply-
ing and re-evaluating a policy [2]. For each iteration, a value
function is evaluated on the current policy, which is then
applied to improve the policy. "Each policy is guaranteed
to be a strict improvement" on previous policies, unless an
optimal policy was already found [1].

C. SARSA
SARSA is a model-free, on-policy, temporal-difference

reinforcement learning algorithm. Rather than transitioning
from state to state and learning value, SARSA transitions
from state-action pair to state-action pair, learning the value
from those pairs. The algorithm updates estimates with
partial information, without waiting for full episodes, and
builds a policy by trying actions. For each episode, the
algorithm Q is continually updated for the policy, while the
policy is pushed toward a greedier approach with respect
to Q. Greediness is controlled by ϵ, and is often decays as
episodes continue [1].

III. METHODS
Firstly, several executions of Value Iteration on CartPole

were performed to identify the optimal bin sizes for the
environment’s cart position, cart velocity, and pole angular
velocity. Bin sizes for cart position and cart velocity were
p ∈ {4, 6, 8} and v ∈ {4, 6, 8}, respectively, and pole
angular velocity was a ∈ {6, 8, 12}. γ was set to 1.0 for
all permutations. The permutation which maximized score
for Value Iteration informed the final bin sizes for CartPole.

Then, each MDP environment was applied to Value It-
eration, Policy Iteration, and SARSA. Each reinforcement
algorithm was trained on each environment with γ ∈
{0.8, 0.9, 0.99, 1.0}, for a total of 4 trainings per iteration per
environment. The γ that scored the best for each algorithm
was recorded. On Value Iteration and Policy Iteration, a
constant θ of 0.1 was used. On the Blackjack MDP, SARSA
was executed on 300,000 episodes. On the CartPole MDP,
SARSA was executed on 5,000 episodes. On SARSA, an
initial ϵ = 0.3 was used with a 99.995% decay ratio to a
minimum ϵ = 0.1.

IV. RESULTS
Firstly, the final bin counts for CartPole are reported. Then,

for each algorithm for each MDP, results per γ are reported.
Policy maps for Blackjack are reported for each algorithm.
Policy maps are omitted for CartPole due to the continuous
and multidimensional nature of the environment.



CartPole Bin Count Performance on Value Iteration with γ = 1.0
p bins v bins a bins V(s) i Time (ms)

4

4
6 2.83832 9 69
8 2.95279 9 95

12 3.10734 10 153

6
6 2.99469 10 119
8 3.22645 10 156

12 3.37168 12 273

8
6 3.32518 11 168
8 3.70754 12 246

12 3.87580 13 398

6

4
6 3.59903 11 126
8 3.91780 11 170

12 4.08062 12 275

6
6 3.77053 12 205
8 4.21981 12 281

12 4.37621 14 475

8
6 4.04363 12 272
8 4.67142 13 406

12 4.85809 15 678

8

4
6 4.29960 12 183
8 4.85139 13 267

12 5.01291 14 422

6
6 4.47373 13 301
8 5.16757 14 421

12 5.32412 16 725

8
6 4.73245 14 424
8 5.60445 15 609

12 5.79495 17 1,017

TABLE I
MEAN VALUE SCORES ON VALUE ITERATION FOR EVERY PERMUTATION

OF CARTPOLE BIN COUNTS. AS THE NUMBER OF BINS BECOME MORE

GRANULAR, SCORE, ITERATIONS, AND TIME INCREASE.

A. CartPole Bin Counts

As bin count sizes increased for each bin type, the reported
mean V(s) for Value Iteration also increased. However, this
also incurred more iterations to convergence and longer
execution times. The smallest permutation with p = 4, v =
4, a = 6 had a mean V(s) of ∼ 2.83832 after 9 iterations in
69ms. The largest permutation with p = 8, v = 8, a = 12
had a mean V(s) of ∼ 5.79495 after 17 iterations in 1,017ms.
All permutation results can be found in Table I. With these
results, a final permutation of p = 4, v = 4, a = 15 is
selected.

B. Value Iteration

For the Blackjack MDP, all γ behaved similarly on Value
Iteration. The mean score V(s) was maximum at 2 iterations,
stabilized by 5 iterations, then fell to 0 at iteration 6. Between
2 and 5 iterations, γ = 0.8 had the highest mean V(s), and
γ = 1.0 had the lowest mean V(s). The maximum score
V(s) remained at 1.0 from iteration 2 through iteration 5,
then fell to 0 at iteration 6 for all γ, as seen in Fig. 1. The
highest mean V(s) was 0.10075 for γ = 0.8 at iteration 2,
which is slightly higher than an average of drawing each
game (V = 0). Value Iteration executed on all γ in 59ms.

For the CartPole MDP, each γ appeared to achieve a simi-
lar shape for mean and maximum V(s), but the magnitude of
the shape increased as γ increased. For all γ, the mean score
V(s) increased logarithmically before reaching a plateau, then
dropped to 0 at iteration 13, as seen in Fig. 2. γ = 0.8 began

Fig. 1. The mean and max V(s) for Value Iteration on the Blackjack MDP

Fig. 2. The mean and max V(s) for Value Iteration on the CartPole MDP

to plateau at iteration 8 with a mean value V (s) ≈ 2.25,
which means that on average slightly more than 2 steps were
taken per iteration. γ = 1.0 plateaued at iteration 10 with the
highest mean value V (s) = 3.13424, which means that on
average slightly more than 3 steps were taken per iteration.
For maximum score V(s), all γ increased before plateauing
at iteration 11, then falling to 0 at iteration 13. γ = 0.8 had
the lowest maximum V(s) at ≈ 4.5, and γ = 1.0 had the
highest maximum V(s) at 10.0, which is equivalent to 10 cart
movements taken, including the movement that terminated
the game. Value Iteration executed on all γ in 679ms.

C. Policy Iteration

For the Blackjack MDP, each γ followed a similar trajec-
tory for mean and maximum V(s), with some variance in
mean magnitude and persistence. At iteration 2, the mean
value V(s) was negative for all γ, with γ = 0.8 reporting
≈ −0.225, and γ = 0.9 reporting ≈ −0.31. By iteration 3,
all γ trended positive, with γ = 0.8 reporting the highest
mean V(s) at ≈ 0.049. All γ converged at iteration 4 at
0.08150, which is marginally better than drawing on average
each game. Most γ fell to 0 at iteration 5, but γ = 0.99
remained stable for one more iteration before falling to 0
at iteration 6, as seen in Fig. 3. For maximum V(s), all γ
held the maximum of 1.0 from iterations 2 to iterations 4,
and γ = 0.99 remained stable for one more iteration before
falling to 0 at iteration 6. Policy Iteration executed on all γ
in 143ms.

For the CartPole MDP, most γ followed a similar tra-
jectory for mean and maximum V(s), with some variance
in magnitude before dropping to 0 at iteration 7. However,
γ = 0.99 degenerated faster than other γ, and dropped to 0
at iteration 6, as seen in Fig. 4. γ = 0.8 had the lowest mean
V(s) at ≈ 2.25 at iteration 6, while γ = 1.0 had the highest
mean V(s) at 3.13424 at iteration 6, which is equivalent to



Fig. 3. The mean and max V(s) for Policy Iteration on the Blackjack MDP

Fig. 4. The mean and max V(s) for Policy Iteration on the CartPole MDP

slightly more than 3 steps taken on average per iteration.
Similarly, γ = 0.8 at the lowest maximum V(s) at ≈ 4.5
at iteration 6, while γ = 1.0 at the highest maximum V(s)
at 10.0 at iteration 6, equivalent to 10 cart moves taken,
including the movement that terminated the game. Policy
Iteration executed on all γ in 1,197ms.

D. SARSA

For the Blackjack MDP, the best γ = 0.99 yielded a
cumulative reward per episode which trended downward
as episodes continued before reaching a final total reward
of −23, 525 at 300,000 episodes. However, the average
reward per episode increased before converging to −0.0566
at around episode 200,000, as seen in Fig. 5. This average
reward is equivalent to performing marginally less than
drawing on average per game. SARSA executed with γ =
0.99 in 33.2 seconds.

For the CartPole MDP, the best γ = 1.0 yielded a
cumulative reward per episode which trended upward as
episodes increased before reaching a final total reward of
886, 020 at 5,000 episodes. Average reward climbed steadily
until convergence at around episode 2,000 with value 212.3,
as seen in Fig. 6. This average reward is equivalent to
applying just over 212 movements to the cart, on average,

Fig. 5. The total and average reward for SARSA on the Blackjack MDP

Fig. 6. The total and average reward for SARSA on the CartPole MDP

and the game terminating. SARSA executed with γ = 1.0 in
65.5 seconds.

E. Blackjack Policy Maps

For each algorithm, a policy map was generated on the
Blackjack MDP using the γ that maximized value. These
can be seen in Fig. 7. Each cell indicates a policy to take,
where H means to "hit", and S means to "stick", and the color
of the cell indicates the confidence in the particular policy.
Each column represents the face-up dealer card in the current
state, where columns 0 through 7 represents cards 2 through
9, column 8 represents 10 or any face card, and column 10
represents an ace. Each row represents the card sum and
action of the player’s state. Rows 0 through 17 represent
sums from 4 to 21 and the player can choose to hit or stick,
denoted H4 through H21. Rows 18 through 27 represent
sums from 12 to 21 and the player has already stuck, denoted
S12 through S21. Row 28 represents a blackjack, denoted
simply as BJ.

For Value Iteration and Policy Iteration, 5 distinct policy
partitions form in the policy map. Rows 0 through 7, which
represent H4 through H11, create a partition which call to hit.
Similarly, rows 18 through 23, which represent S12 through
S17, create a partition which call to hit. Rows 24 through 28,
which represent S18 through S21 and BJ, create a partition
which call to stick. From rows 8 to 12 and columns 5 to 9,
which represent player states H12 through H16 and dealer
states 7 through 10, face cards, and ace, create a partition
which call to hit. The remaining partition which spans rows
8 to 17 excluding the previous partition calls to stick.

The policy map formed by SARSA largely retains the
same partition, but there is more blending in the decision
boundaries. In particular, more calls to hit are present be-
tween rows 8 to 12, which represent H12 through H16.

V. ANALYSIS

The results for each algorithm for each MDP were ana-
lyzed to determine how the algorithm performed on different
values for γ. Then, the algorithms were compared for each
MDP to identify differences between algorithm performance.

A. Intra-algorithm Analysis

1) Value Iteration: On the Blackjack MDP, γ = 0.8
performed the best with a mean V(s) of 0.10075 and held
the highest mean V(s) for all γ between iterations 2 through
5. Within the context of the environment, this mean score



Fig. 7. Value Iteration and Policy Iteration have 5 clear policy partitions.
SARSA’s policy somewhat follows these partitions, but the decision bound-
aries are more complex.

is slightly better than drawing on average for every game.
Because the lowest γ performs best, this suggests that
the agent behaves better when applying some emphasis on
immediate reward in addition to future reward. In Blackjack,
this can be thought of as playing a more conservative hand;
if the agent has a sum of 18 or 19, they do not want to hit
in the hopes of getting a 2 or 3. This behavior can be seen
in the policy map as well. When the agent can choose to
hit or stick, and the sum is between 12 and 21, there is an
increased emphasis on selecting to stick.

All γ dropped from a positive score to 0 at iteration 6, and
remained at 0 for all future iterations. This can suggest that

a degenerate policy is forming, where the agent converges
but leads to terminal states with no reward. However, this
might also be a symptom of the environment. Blackjack has
a short horizon, so episodes typically terminate after a few
actions. This further explains why Value Iteration prefers
lower γ with Blackjack; because there are fewer future states,
immediate rewards matter more.

On the CartPole MDP, γ = 1.0 performed the best with
a mean V(s) of 3.13424 and held the highest mean V(s) for
all γ between iterations 0 through 12. Within the context
of the environment, this mean score indicates that the agent
applied a little over 3 actions on average for every simulation.
Because the highest γ performs best, this suggests that the
agent behaves better when applying full emphasis on future
reward. Since the reward function for CartPole is simply
the length of an episode, it makes sense that Value Iteration
would place the most emphasis on maximizing the possibility
of extending the episode.

All γ dropped from a positive score to 0 at iteration 13,
and remained at 0 for all future iterations. In an environ-
ment like CartPole, where the objective is to stay alive as
long as possible, this is surprising. This suggests that the
agent is forming a degenerate policy that is too simple or
brittle to generalize to the environment. Poor lifetime might
be a symptom of the bin count strategy selected for the
environment’s variables. Coarse bin counts where equally
distributed across cart position and velocity; applying more
bins that offer more granularity in the middle and broader
representation on the edges might permit the agent to learn
a better policy.

2) Policy Iteration: On the Blackjack MDP, γ = 0.99
performed the best with a mean V(s) of 0.08150 and held
the highest mean V(s) for all γ between iterations 4 through
6. Within the context of the environment, this mean score
is slightly better than drawing on average for every game.
The best γ suggests that the agent behaves best when
applying most emphasis on future reward, but gives some
consideration to immediate reward. In Blackjack, this can be
thought of as playing a riskier hand.

All γ dropped from a positive score to 0 by iteration 6,
and remained at 0 for all future iterations. Similar to the
discussion with Value Iteration, this might be a symptom of
the environment, where episodes are terminated after only
a few actions. Despite this, Policy Iteration still prefers a
higher γ as it evaluates full policies and can better leverage
future returns.

On the CartPole MDP, γ = 1.0 performed the best with
a mean V(s) of 3.13242 and held the highest mean V(s)
for all γ between iterations 0 through 7. Within the context
of the environment, this mean score indicates that the agent
applied a little over 3 actions on average for every simulation.
Because the highest γ performed best, this suggests that the
agent behaves better when applying full emphasis on policies
that maximize future reward. Similar to the behavior seen in
Value Iteration, this behavior also makes sense, as the reward
provided by CartPole simply equates to the length of the
episode.



All γ dropped from a positive score to 0 by iteration 7,
and remained at 0 for all future iterations. Similar to what
was discussed on Value Iteration with CartPole, this might
be an effect of poor bins on the continuous variables in the
observable space of the environment.

3) SARSA: On the Blackjack MDP, γ = 0.99 performed
the best with a final average reward of −0.0566. Within the
context of the environment, this score is slightly worse than
drawing on average for every game. This is indicative of how
Blackjack works, where the average score is around −0.0667
per game for humans. Applying a greedy ϵ = 0.3 to this
environment seemed to allow the agent to emulate human
behavior, but not maximize reward in the game. Because
Blackjack is a stochastic game, both in the shuffling of the
deck and the dealer’s hand, it is important for the agent
to learn on multiple states so actions can be generalized.
Applying an even greedier ϵ and a more gradual ϵ decay
might allow more random actions and states to be visited,
which might lead to a strategy which performs better than
humans.

On the CartPole MDP, γ = 1.0 performed the best with
a final average reward of 212.3. Within the context of the
environment, this score indicates that the agent applied a
little over 212 actions on average for every simulation.
This is slightly better than 40% of the life cycle of the
environment, as CartPole automatically terminates after 500
actions in an episode. Applying a greedy ϵ = 0.3 to this
environment seemed to greatly benefit the algorithm. The
average reward quickly climbs to the 200s, as seen in Fig. 6,
before stabilizing. By allowing the agent to explore several
random states early on, it identified actions that maximized
reward. It is possible that an even greater ϵ, or a more gradual
ϵ decay, would permit even greater average reward.

B. Inter-algorithm Analysis

1) Performance on Blackjack: On the Blackjack MDP,
Value Iteration converged faster, as seen in Fig. 8. Value
Iteration with γ = 0.8 stabilized on a mean score of 0.08150
after 3 iterations, whereas Policy Iteration with γ = 1.0
did not stabilize until 4 iterations. There are a few variables
that impact this. Firstly, since Value Iteration is functioning
under a lower γ, its effective horizon is shorter, which
can speed up value propagation. In addition, the stochastic
nature of Blackjack makes policy updates in Policy Iteration
more expensive, whereas Value Iteration can handle this
uncertainty with fewer updates.

Comparing their policy maps, Value Iteration and Policy
Iteration yielded the same policies, with variance only in
some of the weights assigned to actions.

SARSA performed worse than Value Iteration and Policy
Iteration. With γ = 0.99, the algorithm converged to a lower
average reward of -0.0566. While this is slightly better than
the average reward for a human player per game, it still
results in a net loss, while the policies returned by Value
Iteration and Policy Iteration provide a net win. Additionally,
the algorithm was significantly slower; SARSA took 33.2

Fig. 8. Algorithm performance on Blackjack, where Value Iteration has
γ = 0.8 and Policy Iteration has γ = 1.0

Fig. 9. Algorithm performance on CartPole, where Value Iteration has
γ = 1.0 and Policy Iteration has γ = 1.0

seconds to complete, while the other algorithms executed in
under 1 second each.

2) Performance on CartPole: On the CartPole MDP,
Policy Iteration converged faster, as seen in Fig. 9. Policy It-
eration with a γ = 1.0 stabilized on a mean score of 3.13424
after 6 iterations, whereas Value Iteration with γ = 1.0 did
not stabilize until 12 iterations. Since CartPole is a discrete
state space, this is unsurprising, as Policy Iteration performs
best when the environment has well-behaved structure.

The resulting policy maps for Value Iteration and Policy
Iteration on CartPole are included in Fig. 10. While impos-
sible to read, it can be determined visually that the same
policy is synthesized from each algorithm.

SARSA scored significantly better than Value Iteration or
Policy Iteration, but took significantly more time to execute.
With γ = 1.0, the algorithm converged to a much higher
average reward of 212.3, which is more than 670% greater
than the average reward from the other algorithms. However,
this spike in performance came at a cost. While Value
Iteration and Policy Iteration executed in under 2 seconds
each, SARSA completed in 65.5 seconds.

VI. CONCLUSION
Two different Markov Decision Processes were executed

on Value Iteration, Policy Iteration, and SARSA.
Blackjack is a discrete, stochastic MDP that rewards the

agent based on how well it played the game against an
opponent with a random shuffled deck. A Value Iteration
algorithm with γ = 0.8 and θ = 0.1 converged fastest
on the MDP, generating a policy that prioritized playing
conservatively with a final mean V(s) of 0.08150. Value
Iteration converged faster than Policy Iteration, which can
be attributed to Value Iteration executing on a lower γ and
performing better with stochastic environments. A SARSA



Fig. 10. Value Iteration and Policy Iteration for CartPole are visually
identical. The rows represent a combination of angular velocity bins, while
the columns represent a combination of cart position and cart velocity bins.

algorithm with γ = 0.99 and an initial ϵ = 0.3 produced the
lowest average score of -0.0566 after 300,000 episodes.

From working with the Blackjack MDP, it has become
evident that stochastic environments work better with greed-
ier ϵ for model-free algorithms. Similar to temperature in
simulated annealing, applying a greedy ϵ with gradual decay
allows the algorithm to explore more of the state space
and provide more opportunity to discover the global optima.
This is an opportunity for improvement on this work with
SARSA; by providing a greedier ϵ, the algorithm might have
learned a policy that performed much better than humans,
and possibly better than the model-based algorithms.

CartPole is a continuous, deterministic MDP that rewards
the agent for surviving longer in each iteration, and requires
continuous variables such as cart position, cart velocity,
and pole angular velocity, to be divided into bins. For
all algorithms, cart position and cart velocity were evenly
divided into 4 bins each, and pole angular velocity was
evenly divided into 15 bins. A Policy Iteration algorithm
with γ = 1.0 converged fastest on the MDP with a final
mean V(s) of 3.14242. Policy Iteration converged faster than
Value Iteration, which can be attributed to Policy Iteration
preferring discrete state spaces. A SARSA algorithm with
γ = 1.0 and an initial ϵ = 0.3 produced the highest averaged
score of 212.3 after 5,000 episodes.

Working with the CartPole MDP highlighted how bin
counts affect the performance of all reinforcement learning
algorithms. From exploring different permutations of bin
counts, increasing bin counts always improved reward at the
cost of execution time. However, extremely coarse bins, such
as the bin count of 4 used for theses experiments, restricted
algorithms from gaining insightful feedback and thus capped
the resulting policies.

Creating bins with more granularity would provide space
for more meaningful insight to propagate. Additionally, par-
titioning bins to have a variety of sizes would permit the
agent to execute very small adjustments that might stabilize
the pole. Aside from applying these bins, there could have
been more thorough investigation on the permutations of bin
sizes. The permutations limited some variables to only coarse
bins, and all permutations were executed on Value Iteration.
From these experiments we conclude that Policy Iteration
performed better on CartPole; applying this algorithm over
Value Iteration might yield more meaningful results.

REFERENCES

[1] R. S. Sutton, A. G. Barto, Reinforcement Learning: an
Introduction, 2nd. ed. Cambridge, The MIT Press, 2015. pp.
96–100, pp. 154–157. Accessed: Jul 17, 2025. Online. Available:
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

[2] M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. D. Cola, T. Deleu,
M. Goulão, A. Kallinteris, M. Krimmel, A. KG, R. Perez-Vicente, A.
Pierré, S. Schulhoff, J. J. Tai, H. Tan, O. G. Younis. Gymnasium
Documentation. https://gymnasium.farama.org/ Code version: v1.2.0.
(accessed Jul. 9, 2025).

[3] J. Mansfield. Better MDP Tools Documentation.
https://jlm429.github.io/bettermdptools/bettermdptools.html Code
Version: v0.8.1. (accessed Jul. 9, 2025).

[4] The Matplotlib development team. Matplotlib Documentation.
https://matplotlib.org/3.8.4/index.html Code Version: v3.8.0. (accessed
Jul. 9, 2025).

[5] NumPy Developers. NumPy Documentation.
https://numpy.org/doc/1.26/index.html Code Version: v1.26.0.
(accessed Jul. 10, 2025).


